International Conference: The pathway for efficient utilization of small diameter wood Uppsala (Sweden), 1st June 2022

BUSH HARVESTING, PILOT STUDIES ON RETRABIO AND BIOBALER

Prof. Dr. Eduardo Tolosana

Universidad Politécnica de Madrid (UPM), Spain

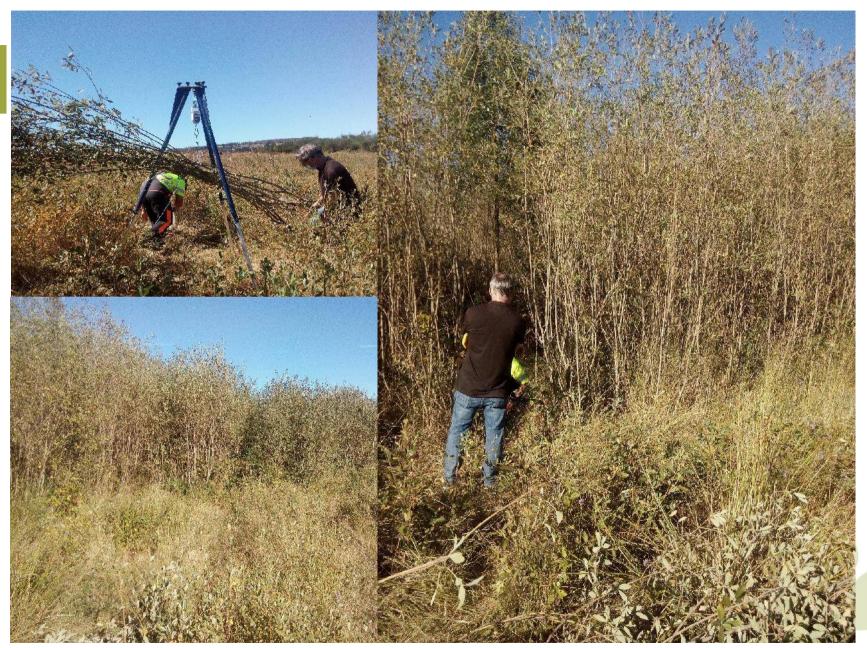
Mulcher-collector RETRABIO:

- > Rotor with 36 hammers rotating upward on the machine front.
- Flywheel and discharge spout
- ➢ 24 m³ container

1.A Salix coppice systematic mulching and biomass collection

As Pontes (A Coruña)

- INVENTORY: 28 circular plots (2 m radius):
 - Stand conditions including scrubs
 - Weight of different *Salix* stools/moisture content samples
- Detailed continuous TIME STUDY
- Scaling extracted biomass /moisture content samples
- POST-TREATMENT INVENTORY ALONG TRANSECTS perpendicular to mulched strips: 26 circular plots (1 m radius):
 - Stand conditions after the treatment
 - Stand/soil damages characterization
 - Stump height and status
 - Weigth of downed woody material/moisture content samples



← Pre-harvesting inventory

Post-harvesting inventory \rightarrow

←Biomass samplingweighing

Results

N (tree/ha)	Tree h (m)	DBH (cm)	Tree canopy cover (%)	Shrub h (m)	Shurb canopy cover (%)	Fresh weight (t/ha)	ODt/ha
36321 (10435)	5.6 (1.1)	2.23 (0.79)	79.2 (16.7)	1.9 (0.6)	48.5 (38.0)	57.6 (28.1)	30.6 (15.0)
	(h max)						

Results

Treated area (ha): 0.557 Odt·ha⁻¹ before treatment: 30.6 Machine speed while brushcutting (km·h⁻¹): 0.8 Total travelled distance (m): 844 Extracted dry biomass (ODt): 2.77 % Extracted/Standing biomass \approx 45% Productive machine hours (PM₁₅h): 1 h 41 min

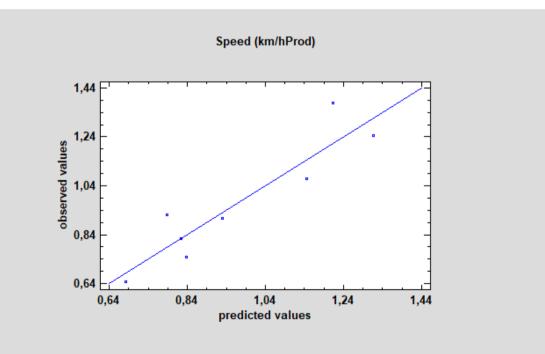
Time study

- Productivity reached 3.58 fresh tonnes/Productive hour = 1.86
 ODt/Productive hour.
- Productivity = 1.64 ODt/PM15h
- Economic Balance (for roadside biomass price 20 €/fresh t): 205.6 €/ha⁻¹ (*)

(*) Hourly costs from Esteban, L. S. *et al.*, 2017

Time % **Phase Empty movements** 0:05:24 5% Mulching/collection 1:01:04 60% Manouevring/changing 0:12:23 12% striproad Loaded movements 0:02:57 3% Unloading 7% 0:06:42 Planning 0:03:05 3% Other breaks 0:09:31 9% TOTAL 1:41:06 100%

Productivity model



V (km·ProdH⁻¹) = 4.06 – 0.0000207·Ntrees·ha⁻¹ – 0.385·Hmax, m – 0.0297·SBV (Shrub Cover, % · Shrub aver. Heigth, m.) (adj R² = 0.73, P=0.042)

Prod $(ha \cdot Prod H^{-1}) = 1000 \cdot V (km \cdot Prod H^{-1}) \cdot (2.75 + USW - Untreated strips' width -, m)/10000$

Prod (ha·ProdH⁻¹) = 0.1·(4.06 - 0,0000207·Ntrees·ha⁻¹ - 0,385·Hmax, m - 0,00297·SVB) ·(2.75 + USW, m)

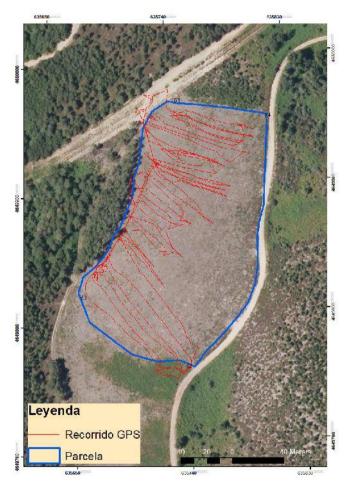
1.B Pine post-fire regeneration systematic mulching and biomass collection: wildfire preventive treatment

Gondulfes forest, Verín (Orense)

Surface: 638 ha Ownership: Gondulfes and Marbán villagers community

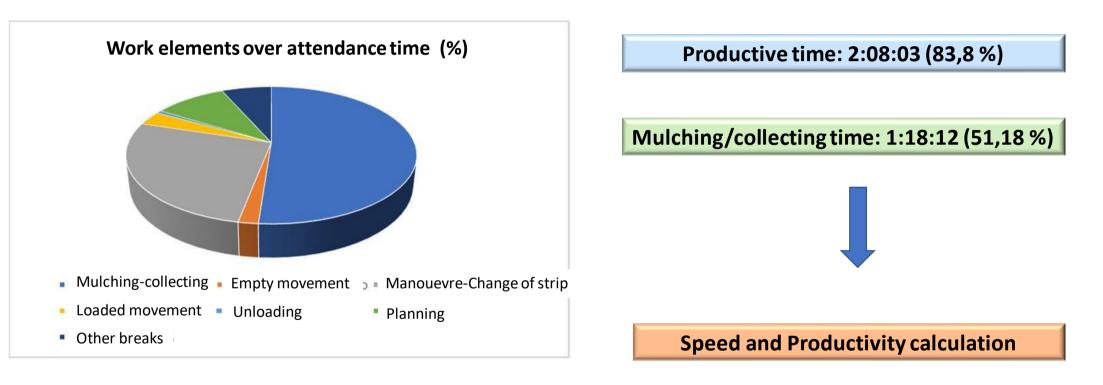
- INVENTORY: 85 circular plots (2 m radius):
 - Stand conditions including scrubs
 - Weight of 28 *Pinus* trees/moisture content samples
- Detailed continuous TIME STUDY
- Scaling extracted biomass /moisture content samples
- POST-TREATMENT INVENTORY in 32 2,75x1 m plots located along the mulched strips:
 - Stand/soil damages characterization
 - Stump height and status
 - Weigth of downed woody material/moisture content samples
- Productivity equations fitting cost estimations

P. pinaster, Erica cinerea, Genista tridentata, Ulex europaeus y género Halimium

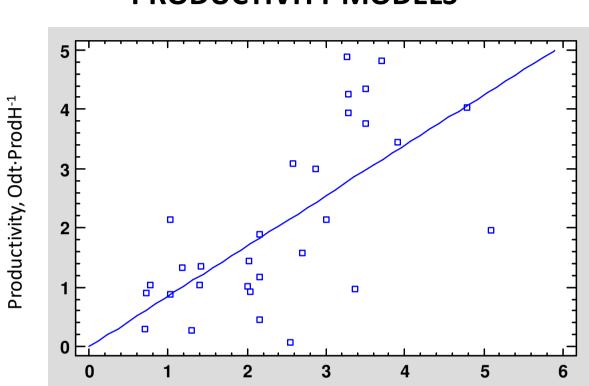

INVENTORY RESULTS (SD in parentheses)

N (trees/ha)	Tree h (m)	DBH (cm)	Tree canopy cover (%)	Shrub h (m)	Shurb canopy cover (%)	Green weight (t/ha)	ODt/ha
4126	1.9	2.9	37.6	0.5	22.7	21.0	8.49
(3071)	(0.67)	(1.4)	(23.9)	(0.17)	(21.1)	(17.4)	(7.03)

MULCHING – BIOMASS COLLECTION TRIAL



31 mulching strips 2.75 m wide GPS georeferenced



Trial Surface = 1.44 ha

TIME STUDY

Surface Productivity = 0,67 ha·ProdH⁻¹ Hourly cost= 112.0 €·ProdH⁻¹

PRODUCTIVITY MODELS

Pine basal area, m²·ha⁻¹

	Adjusted R ²		
Fitted equation	%	MAE	D-W
Productivity (fresh tonnes·ProdH ⁻¹) = 2.08·BASAL AREA (m ² ·ha ⁻¹)	44,5	2,10	1,13
Productivity (ODt·ProdH ⁻¹) = 0.848·BASAL AREA (m ² ·ha ⁻¹)	45,2	0,84	1,14

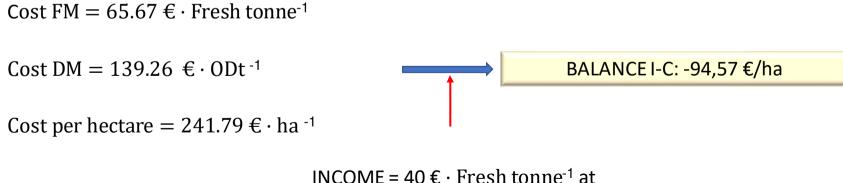
COST ESTIMATION

MULCHING AND COLLECTION

Cost FM = 45.12 € · Fresh tonne⁻¹

TRANSPORT TO POWER PLANT

Cost FM = $10.07 \in \cdot$ Fresh tonne⁻¹


Cost DM = 95.64 € \cdot ODt⁻¹

Cost DM = 21.39 € \cdot ODt ⁻¹

Cost per hectare = $166.05 \in \cdot$ ha ⁻¹

Cost per hectare = $37.14 \in \cdot$ ha ⁻¹

+ 13% INDIRECT & FIXED COSTS + 6% INDUSTRIAL PROFIT

ICOME = 40 € · Fresh tonne⁻¹ powerplant gate Conventional mulching vs RETRABIO

Cost with a chain mulcher: -185.6 €·ha⁻¹

Cost with RETRABIO: -94.57 €·ha⁻¹

SAVINGS OF 91.03 €·ha⁻¹ COMPARED TO CONVENTIONAL MULCHING

2. Biobaler

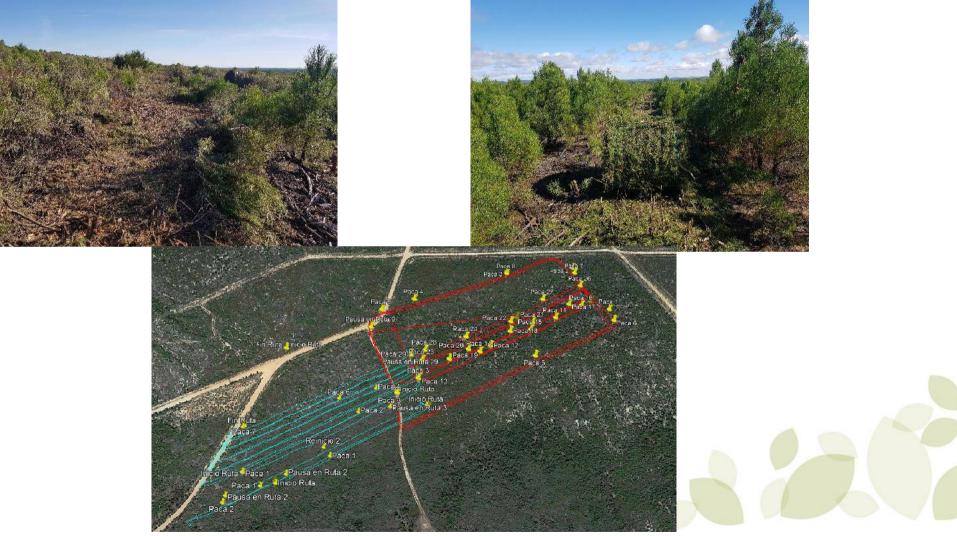
Mulcher-Bundler BIOBALER WB-55:

- > Biobaler WB55 is an alternative to conventional chain or hammer mulchers.
- It collects woody material from 1 to 10 cm diameter, using a continuous technology of mulching and bundling in bales 1.2 m wide and 1.2 m diameter
- Baling eases extraction, transport, stockage and further handling for energy or bioproducts production.

Trials in Castrocontrigo and Tabuyo del Monte forests (León, Spain)

Wildfire preventive treatments by systematic mulching with mulching strips 2.65 m wide, with untreated strips with similar width (Wide) or half width (Narrow). Comparison with conventional mulcher.

MULCHING AND BUNDLING TRIALS



Biobaler trials Surface = 7.15 ha

Site 1: Two plots with 1.4 vs 2.6 m wide untreated strips

Site 2: : Other two plots with 1.6 vs 3.2 m wide untreated strips

- Sampling (frequency) time study
- Bundles geolocation and numbering / moisture content samples
- Post-treatment inventory along the strip roads:
 - Weigth of downed woody material / moisture content samples
 - Average height and canopy cover of trees and shrubs
 - Stand/soil damages characterization
 - Stump height
- Scaling extracted biomas / moisture content samples

Treated area with BioBaler: 7.15 total ha (4.36 ha mulched)

Dry tonnes / bale (ODt): 0.179

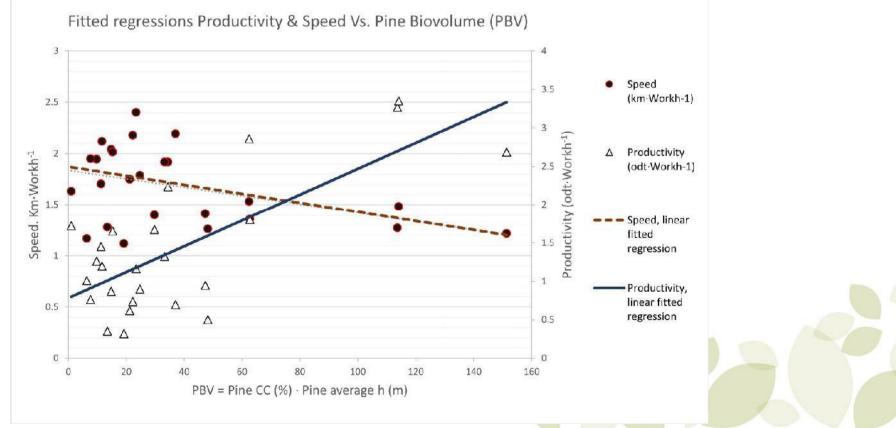
Machine speed while brushcutting-bundling (km/h): 2.75

Biobaler stratum characteristics (the different superscript letters indicate statistically significant differences at 95% probability). Acronyms: N, narrow; W, wide; CC, crown cover; h, height.

Site	Stratum (% of Systematically Cleared Surface)	Pine Biovolume (CC,%·h,m)	Shrubs Biovolume (CC,%·h,m)	Total Biovolume (Pine + Shrubs)	Stumps Average Diameter, cm
	N (59%)	20 <mark>.</mark> 7 ª	49 <mark></mark> 4 ª	70 <mark>.</mark> 1 ª	1 <mark>.</mark> 0 a
1	W (50%)	91 <mark>.</mark> 9 ^ь	6 <mark>.</mark> 2 ^ь	98 <mark>.</mark> 1 ^ь	3 <mark>.</mark> 2 ь
	N (62%)	10 <mark>.7</mark> a	54 <mark>.</mark> 5 ª	65 <mark>.</mark> 2 ^{a.b}	1 <mark>.</mark> 6 °
2	W (46%)	30 <mark>.</mark> 9 ª	53 <mark>.</mark> 9 ª	84 <mark>.</mark> 8 ^{a.b}	1 <mark>.</mark> 8 c

MAIN FIGURES: COLLECTION EFFICIENCY

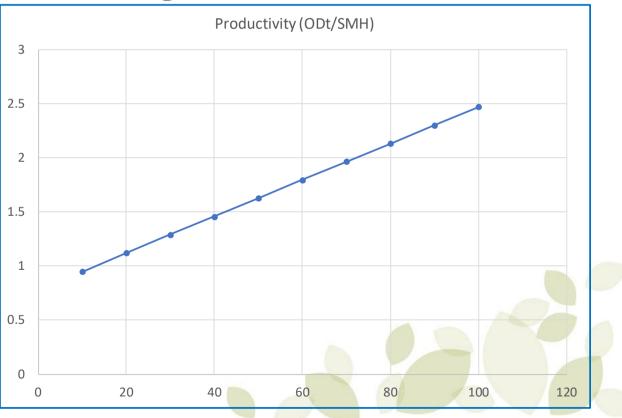
Biobaler collection efficiency (the different superscript letters indicate statistically significant differences at 95% probability). Acronyms: N, narrow; W, wide; odt, oven dry tonne; ha, hectare.


Site	Stratum (% of SystematiCally Cleared Surface)	Biomass Left on the Ground, odt·ha ⁻¹	Collected Biomass Weight, odt·ha ⁻¹	Total Biomass Weight, odt∙ha⁻¹	Collection Efficiency, %
	N (59%)	3.0 a	1.35 a	4.31 a	29.8 a.b
1	W (50%)	4.9 b	3.41 ^b	8.35 b	41.6 ^a
	N (62%)	3.5 a.b	1.44 a	5.09 a	33.1 ª
2	W (46%)	3.7 ^{a.b}	0.88 a	4.63 a	20.4 ^b

The average weight and surface productivity was 1.41 odt·Workh⁻¹ and 0.75 ha·Workh⁻¹ (0.45 cleared ha·Workh⁻¹)

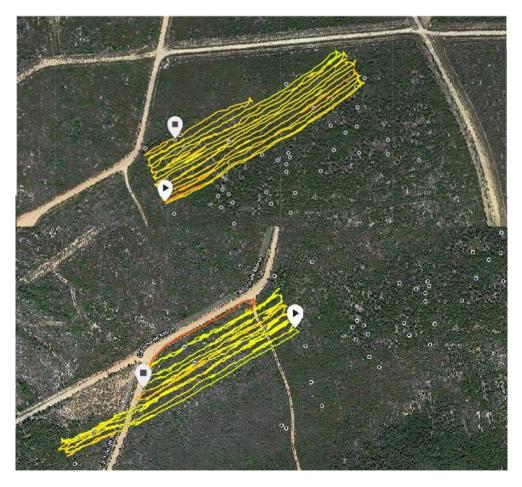
Results

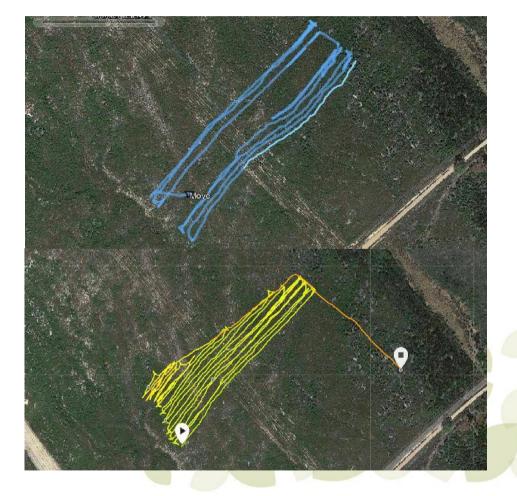
SPEED AND PRODUCTIVITY EOUATIONS


BIOBALER Productivity

PB= Pine biovolume (canopy cover, % x height, m)

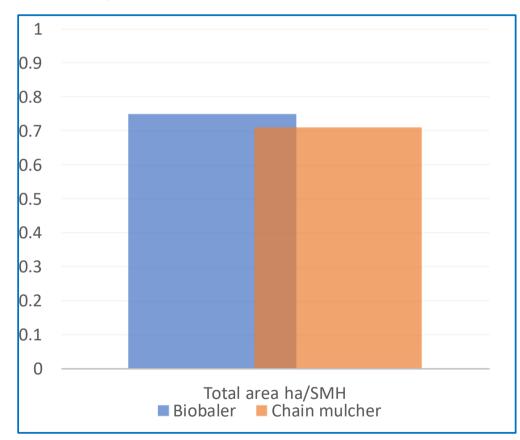
 $R^2 = 53,5$



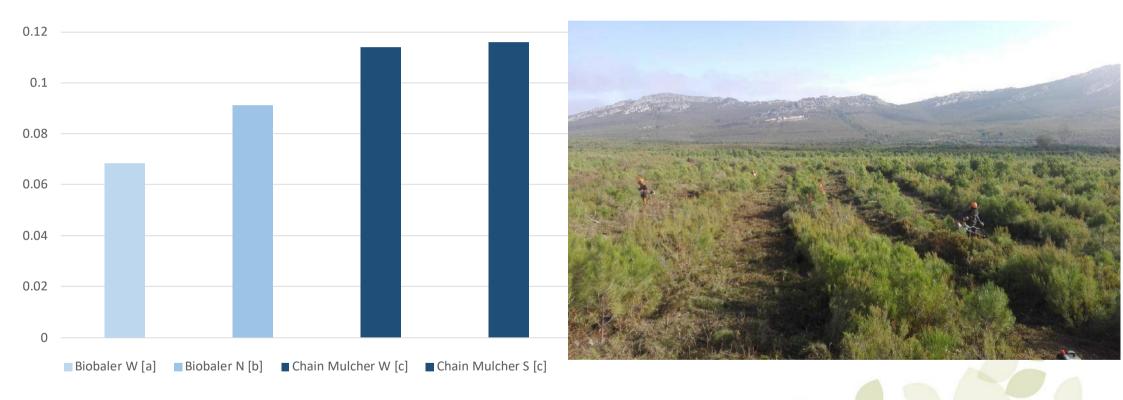


CHAIN MULCHER STUDY PLOTS

2 Sites, 2 Wide and narrow strips strata per site (surface mulched: 2.32 out of 4.70 total ha)



BIOBALER VS CHAIN MULCHER PRODUCTIVITY


Surface per SMH

Statistical analisys motormanual clearing

Productivity: Total Surface (ha) per WH and worker (team of 4 workers equiped with clearing saws)

COST €·ha⁻¹ for the 4 tried alternatives

700 600 500 400 300 0 CHAIN MULCHER W CHAINN MULCHER N **BIOBALER W BIOBALER N** BRUSHCUTTING / CLEARING FORWARDING **INCOME** BUNDLING

CONCLUSSIONS

✓ RETRABIO PERMITS THE TREATMENT OF VERY DENSE SALIX COPPICES AT A COST OF
SLIGHTLY MORE THAN 200 €·HA⁻¹. THE PRODUCTIVITY DEPENDS NEGATIVELY OF DENSITY,
TREE SIZE AND SHRUB BIOVOLUME (COVERAGE% *SHRUB HEIGTH).

✓ RETRABIO TECHNOLOGY DOES NOT PERMMIT SELF-FINANCING WILDFIRE PREVENTIVE TREATMENTS ON POST-FIRE REGENERATED VERY YOUNG PINE STANDS, BUT, IN THE STUDIED CONDITIONS, ALLOWS SAVING 49% IF COMPARED WITH THE MOST COMMON ALTERNATIVE TREATMENT (HAMMER MULCHER), BESIDES COLLECTING BIOMASS. THE PRODUCTIVITY DEPENDS POSITIVELY OF BASAL AREA.

✓ UNDER THE STUDIED CONDITIONS, BIOBALER IS NOT COST-COMPETITIVE WITH THE ALTERNATIVE TECHNOLOGY FOR SYSTEMATIC-SELECTIVE CLEARINGS OF POST-FIRE REGENERATED VERY YOUNG PINE STANDS, BECAUSE ITS LOW COLLECTION EFFICIENCY AND BECAUSE THE STUMPS LEFT ON THE MULCHED SURFACE DIFFICULTS THE SELECTIVE TREATMENT WITH PORTABLE CLEARING SAWS.